Objective Question Practice Programe

Date: 30 April, 2016

CE-Test-19 (OBJECTIVE SOLUTION)... 🔊

				_	AN	SWI	ERS)				
1.	(a)	21.	(c)	41.	(b)	.org	61.	(b)	81.	(c)	101.	(d)
2.	(b)	22.	(a)	42.	(b)	esmaster	62.	(a)	82.	(c)	102.	(c)
3.	(b)	23.	(c)	43.	(b)	www.ie	63.	(b)	83.	(b)	103.	(a)
4.	(d)	24.	(d)	44.	(a)	Vebsite :	64.	(a)	84.	(c)	104.	(d)
5.	(a)	25.	(b)	45.	(c)	08) V	65.	(b)	85.	(a)	105.	(d)
6.	(d)	26.	(c)	46.	(b)	7118539	66.	(c)	86.	(b)	106.	(a)
7.	(a)	27.	(c)	47.	(b)	9220, 9	67.	(d)	87.	(b)	107.	(b)
8.	(b)	28.	(b)	48.	(d)	, 81309(68.	(c)	88.	(a)	108.	(a)
9.	(a)	29.	(b)	49.	(b)	1013406	69.	(b)	89.	(d)	109.	(d)
10.	(b)	30.	(b)	50.	(c)	: 011-4	70.	(b)	90.	(c)	110.	(c)
11.	(a)	31.	(d)	51.	(b)	(Phone	71.	(b)	91.	(b)	111.	(a)
12.	(d)	32.	(d)	52.	(c)	110016	72.	(b)	92.	(b)	112.	(a)
13.	(b)	33.	(d)	53.	(b)	7 Delhi-	73.	(d)	93.	(b)	113.	(a)
14.	(c)	34.	(c)	54.	(c)	ai, New	74.	(c)	94.	(c)	114.	(a)
15.	(c)	35.	(c)	55.	(c)	aria Sar	75.	(d)	95.	(d)	115.	(a)
16.	(b)	36.	(c)	56.	(d)	6, Katw	76.	(b)	96.	(a)	116.	(a)
17.	(a)	37.	(b)	57.	(b)	e : F-12	77.	(c)	97.	(a)	117.	(d)
18.	(d)	38.	(b)	58.	(b)	<pre>Coffic</pre>	78.	(d)	98.	(a)	118.	(c)
19.	(a)	39.	(b)	59.	(c)	ASTER Engineera	79.	(d)	99.	(b)	119.	(a)
20.	(b)	40.	(d)	60.	(b)		80.	(b)	100.	(c)	120.	(a)
						N						
M	IES M	ASTE	R	Office : F	-126, Kat	waria Sar	ai, New Dell	ni-110016 (P	'hone : 011-41	013406, 813	30909220, 97118	353908)
IES MASTER	Institute fo IES/GA	or Engineers (TE/PSUs				Websi	ite : www.iesr	naster.org E-n	nail: ies_master@	yahoo.co.in		

М	IES		CE ((Test-	19), Objective Solutions, 30 April 2016 (3)
30.	(b)	tan milingan kina ana ana ana ana ana ana ana ana ana		.म <u>ु</u> 43.	(b) Available moisture content $= 18 - 10 = 8\%$
31.	(d)			hoo.c	At 50% depletion available moisture content =
32.	(d)	$Q = 30 \text{ m}^{3}/\text{sec}$ $d_{mm} = 0.3$	mm	r@ya	8% - 4% - 0.04
		silt factor f = 1.76 $\sqrt{d_{mm}}$		maste	$\frac{1}{2} = 4\% = 0.04$
		$f = 1.76 \times \sqrt{10}$	0.3	.ies_	depth of irrigation
		f = 0.964	0.0	rmail	$\gamma_{\rm d}$, γ_{\rm
		$(0f^2)^{1/2}$	6	org B	$= \frac{\gamma_{\rm w}}{\gamma_{\rm w}} \times 0 \times \text{MLC} = \frac{1000}{1000} \times 1.2 \times \frac{100}{100} = 71 \text{ mm}$
		average velocity $v = \left(\frac{d}{140}\right)$		aster.	Frequency of irrigation
		(30×0	964^2) ^{1/6}	iesm	d 71 11 28 day 44 h
		$=\left(\frac{33\times31}{14}\right)$	$\left(\frac{1}{0}\right)$	VWW.	$= \frac{1}{C_u} = \frac{1}{6} = 11.38 \text{ day} \simeq 11 \text{ days}$
		v = 0.764	m/sec		(a) Area to be irrigated
33.	(d)			Webs	48 0010
34.	(c)			-	$= 18,000 \times \frac{100}{100} = 8640$ ha
35.	(c)			3908	
36.	(c)			1185	Duty D = $\frac{8.64 \text{ B}}{D} = \frac{8.64 \times 30}{120 \times 10^{-3}} = 2160 \text{ m}^3/\text{s}$
37.	(b)			0, 97	D 120×10
38.	(b)			0922	Area to be irrigated
39.	(d)			1309	Outlet discharge = Duty of crop
40.	(u)	,		06, 8	0040
		$T = 2.3 \frac{y}{f} \log_{10} \left(\frac{y}{f} \log_{10} \frac{y}{f} \right)$	$\frac{Q}{Q-f.A}$	10134	$= \frac{8640}{2160} = 4 \text{ m}^3/\text{s}$
	\Rightarrow	$Q = 0.043 \times 60 \times 60 m^{3/h} =$	= 154.8 m³/h	₹ 45.	(c)
		0.0635 (154	8	ne : (Available moisture = Field capacity – Permanent
	Τ=	$2.3 \times \frac{0.0033}{0.05} \log_{10} \left(\frac{134.8}{154.8} - 0.0 \right)$	$\frac{5}{5 \times 3030}$	(Pho	wilting point
				016	⇒ 28 − 13 = 15%
	Т	= 4.88 hour		-110	Hence, readily available moisture
41.	(b)			Dellhi	$= 0.8 \times 15 = 12\%$
	()			[ew]	Depth of water stored in root zone
42.((b)	Area of rice transpla	ntation =	ai, N	v d
		65 yean 520 ba		a Sar	$=\frac{\gamma_{d.u}}{\gamma_{w}}(F.C-O.M.C)$
		$\frac{100}{100} \times 600 = 520$ Ta		waria	
	irriga	ation required for transplantati	on of rice is	Kat	$= 1.3 \times 0.72 (0.28 - 0.16) = 0.1123 \text{ m}$
	give	n by,		-126,	= 11.23 cm
	$\Delta = I$	Depth of water required by the o	rop – useful	е: Н	1.0 cm of water is utilised by the plant in 1 day
	raint	all = 60 - 15 = 45 cm		Offic	11.23 cm of water will be utilised by the plant in
	duty	at the head of distributory		<u>к</u>	$=\frac{1\times11.23}{1.0}=11.23$ days = 11 days
		8.64 B 8.64×15 - 288 ba / suma		u ⊢ ഗ⊯ 46.	(b)
	$=$ Δ $=$ 0.45 $=$ 200 Ha / cume			47 .	(b)
Duty		v at the head of field channel	1	ທ [∭] 48.	(d)
		= 288 × (1 – 0.25) = 216	ha/cumec	2 49.	(b)
		IES MASTER	fice : F-126, Katwa	ria Sarai,	New Delhi-110016 (Phone : 011-41013406, 8130909220, 9711853908)
IFS MAST		Institute for Engineers IES/GATE/PSUs		Website :	www.iesmaster.org E-mail: ies_master@yahoo.co.in

= 208° 1° 15'

59.

60.

(C)

(b)

stitute for Engine

 $= 209^{\circ} 15'$ B.B of Line = $[(320^{\circ} 30' - 3^{\circ} 30') - 4^{\circ}]$ 15'] - 180° = 132° 45' New Delhi-110016 (Phone Magnetic bearing of line OE = 185 - 1.5= 183.5 $= \frac{1.5}{1.0} \times (0.30 - 0.10)$ TB = M.B ± Declination = (183.5 + 3.5° E) = 187° $[T.B = 187^{\circ}]$ = 300 mm 70. (b) Offfice : F-126, Katwaria Sarai, 71. (b) 72. (b) $\sigma_{tne} = p_v \sec^2 \alpha - p' \tan^2 \alpha$ 73. (d) 74. (c) Prism square is based on the same principle as the optical square and is used 0.707 in same manner. It has an advantage over the optical square in that no adjustment is required, since the angle between the reflecting surfaces of prism is kept fixed. $\tan \alpha = 0.707$ MASTER 75. (d) Lines joining the loci of places having same value of dip are known as isoclinic lines, p_v sec² α for zero tailwater depth whereas those joining the loci of places with no dip is called as aclinic line such as $\sec^2 \alpha = [1 + (0.707)^2] = 1.50$ magnetic equator. 76. (b) $\sigma_{toe} = 2.0(1.50) = 3.0 \text{ MPa}$ IES MASTER Office : F-126, Katwaria Sarai, New Delhi-110016 (Phone : 011-41013406, 8130909220, 9711853908)

Website : www.iesmaster.org E-mail: ies_master@yahoo.co.in

	CE (Te	est-	1 9) ,	Objective Solutions, 30 April 2016 (5)		
77. (c)	ni.o.	86.	(b)			
$R = \frac{\rho V x}{\rho V x}$	thoo.c	87.	(b)			
° μ 1000×3× <i>x</i>	er@yo	88.	(a)	$Risk = 1 - q^n$		
$3.6 \times 10^5 = \frac{1000 \times 10^{-10}}{0.001}$	mast			$= 1 - (1 - p)^{}$		
x = 0.12m = 12 cm	il: ies.			$= 1 - \left(1 - \frac{1}{2}\right)^{n}$		
$\frac{\delta}{\kappa} = \frac{5}{\sqrt{D}}$	E-ma			(T)		
^ √ ^K e 5×10.12	r.org			$(1)^{50}$		
$d = \frac{1}{\sqrt{3.6 \times 10^5}} = 0.1 \text{ cm}$	maste			$= 1 - \left(1 - \frac{1}{50}\right)$		
78. (d)	w.ies			$= 1 - (0.98)^{50}$		
Drag force $\mathbf{E} = \frac{1}{2} \mathbf{C}_{\rm D} \times \mathbf{A} \times \mathbf{a} \mathbf{V}^2$	2	89.	(d)			
1	ibsite		\Rightarrow	Loss due to elastic deformation occurs only in pre-tensioning		
$=\frac{1}{2} \times 0.3 \times 3 \times 1.2 \times (20)^2$	We		\Rightarrow	Loss due to friction occurs only in post-		
$F_{D} = 216 \text{ N}$	908)			tensioning		
79. (d)	1853		\Rightarrow	Loss due to creep and shrinkage occurs in both		
80. (b)	126,	90.	(c)	bour		
ol. (C)	9220	91.	(b)			
$\phi' = 30^{\circ}; g_{cot} = 21 \text{ kN/m}^3;$	F = 2; b = ? 00	92.	(b)	In the transitional region of the boundary		
$\gamma' = \gamma_{cat} - \gamma_w = \gamma_{cubmorand} =$	21– 10 ×			where the value of f depends on both Re and K/D.		
=	11 kN/m ³ 5	93	(b)	The values of K/δ' representing the		
v′ tai	마면, <u>남</u>		(~)	boundary in transition are 0.25 < K/ δ' <		
Factor of safety, $F = \frac{\gamma_{sat}}{\gamma_{sat}} ta$	$\frac{1}{2}$ an β $\frac{1}{2}$			6. Therefore, a pipe will behave as		
$(\gamma_{sat} - \gamma_w) \tan 30^\circ$	Phor			hydrodynamically smooth pipe if K/δ' is less than 0.25 and it will behave as		
$\Rightarrow 2 = \frac{\gamma_{sat} \tan \beta}{\gamma_{sat}}$	016 (hydrodynamically rough pipe when K / δ'		
$(21-10) \tan 30^\circ$	0.11			greater than 6.0.		
$\Rightarrow \tan \beta = 2 \times 21$	Delh Delh	94.	(c)	In turbulent flow, velocity fluctuations cause		
$\Rightarrow \beta = \tan^{-1}(0.15)$	Vew			between the neighbouring layers, which is		
82. (c)	rai, l			accompanied by a transfer of momentum.		
$K_0 = 1 - \sin \phi' = 0.5$	tia Sa			to the force in a perticular direction. Hence		
$P_0 = K_0 \gamma z = 0.5 \times 19 \times 8 = 7$	6 kN/m ²			such momentum transport due to		
Total thrust = $\frac{1}{2}$ P _o ×H = 304 k	N g			shear stresses of high magnitude between		
2 ° 83. (b)	F-12			adjacent layers.		
84. (c)	fice :	95.	(d)	Displacement thickness		
85. (a)	<u> </u>			$\delta^* = \int_0^{\delta} \left(1 - \frac{u}{u}\right) dy$		
$S_{F} \left[B_{F} \left(B_{P} + 30 \right) \right]^{2}$				Ju (
$\frac{1}{S_{P}} = \left\lfloor \frac{1}{B_{P}} \left(\frac{1}{B_{F}} + 30 \right) \right\rfloor$	S AL R			$=\int_{0}^{\delta} \left(1-\frac{y}{s}\right) dy$		
$(10^{-10})^{2}$						
$\mathbf{S}_{F} = 10 \left[\frac{1}{30} \left(\frac{1}{230} \right) \right] = 30.245$) m =			$= \delta - \frac{\delta}{2} = \frac{\delta}{2}$		
ILS IVIASIEK Institute for Engineers IES/GATE/PSUs	Office : F-126, Katwaria Sarai, New Delhi-110016 (Phone : 011-41013406, 8130909220, 9711853908) Website : www.iesmaster.org E-mail: ies_master@vahoo.co.in					

Website : www.iesmaster.org E-mail: ies_master@yahoo.co.in

(6) CE (Test-19), Objective Solutions, 30 April 2016

IES MASTER Institute for Engineers (ES/GATE/PSUs)

(-)								Institute for Engineers (IES/GATE/PSUs)
		Momentum thickness	ni.o:	90	(h)	τ	_ u <u>du</u>	
		$\int \delta u \left(1 - u \right) du$	hoo.	33.	(0)	ι ι	- ˈˈdy	
		$Q = \int_0 \frac{1}{U} \left(1 - \frac{1}{U}\right) dy$	@yal				= 10 ⁻³ >	< 0.01[-1000 × 2 × y]
		$\int \delta Y \left(A \right) $	aster			for y	= 1 cm	= 0.01m
		$= \int_0 \frac{1}{\delta} \left(1 - \frac{1}{\delta}\right) dy$	E B			τ	= 10 ⁻³ >	× 0.01 [-2000 × 0.01]
		δδδ	ail: ie				= 0.000	2 N/m ²
		$= \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$	E-m	100.	(c)			
		$\delta^* \delta/2$	org	101.	(d)			
		$\frac{1}{Q} = \frac{1}{\delta/6} = 3$	ster.	102.	(c)			
96.	(a)		sma	103.	(a)			
		Angle of shearing resistance,	w.ie	104.	(d)			
		$\phi = 30^{\circ}$	ΜM	105.	(d))		
		Active earth pressure coefficient	site :	106.	(a))		
			Vebs	107.	(b)		
		$K_n = \frac{1 - \sin \phi}{1 - \sin \phi}$		108.	(a)		
		a 1+sin¢	908)	109.	(d)		
		$=\frac{1-\sin 30^{\circ}}{1-\sin 20^{\circ}}$	853	110.	(c)		
		$1 + \sin 30^{\circ}$	711	111.	(a)		
		$=\frac{1}{2}$	20, 5	112.	(a)		
		3 Active earth pressure at the base	9092	113.	(a)		
		$P = K \sigma$	31309	114.	(a)		
		-Kavz	ŧ06, 8	115.	(a)		
		- Rayz	0134	116.	(a)		
		$=\frac{1}{2} \times 18 \times 3$	4	117.	(d)	If the plate	is very	smooth, even in the
		-19 kN/m^2	0			exists a very	thin lave	er immediately adjacent
			one			to the bound	lary in wh	hich the flow is laminar.
		Active earth pressure at the base when water table is at the ground surface	(Ph	118.	(c)	In actual pr	actice, th	ne friction leads to the
			016			developmer	nt of large	er active pressure than
		$Pa_2 = K_a \gamma_{sub} Z + 1 \times \gamma_{\omega} \times Z$	1100			that estimat	ed by Ra	Inkine's theory and the
		$=\frac{1}{(18-10)\times3+10\times3}$	-inul:	440	(-)	larger passiv	/e pressu	ire than the theoretical.
		3(10,10),0110110	7 De	119.	(a)			
		$= 38 \text{ kN/m}^2$	New			Types of		Ratio of maximum
		Change in earth pressure	rai, J			Sewer		flow
		= 38 - 18	a Sau			1. Trunk m	ains	
		= 20 kN/m ² (increase)	utwaria			above 1 dia	.25 m in	1.5
97	(a)		26, Ke			2. Mains u	oto 1 m	2.0
08	(a) (a)	For greas of moderate sizes, such as	F-12			in dia		2.0
30.	(a)	involved for branch sewers, the maximum	ce :			 Branche 0.5 m in 	s upto dia	3.0
		daily or hourly sewage flows can be	Offi					
		expressed as:	ц			 Laterais small se 	wers	4.0
		Maximum daily flow = 2 times the average daily flow	ASTE	TEPROP		upto 0.2 dia	5 m in	
		Maximum hourly flow = 1.5 times the	M.	120.	(a)) The web	near the	portion of the stress
		maximum daily = 3 times the average daily	S)≣			concentratio	on tends t	to fold over the flange.
			F					

Office : F-126, Katwaria Sarai, New Delhi-110016 (Phone : 011-41013406, 8130909220, 9711853908)