CLASSROOM PRACTICE TEST-02 NETWORK THEORY (SOLUTIONS)

				ANS	WER KEY				
1	(a)	14	(b)	27	(a)	40	(a)	53	(b)
2	(a)	15	(b)	28	(b)	41	(b)	54	(a)
3	(b)	16	(d)	29	(c)	42	(a)	55	(a)
4	(b)	17	(a)	30	(c)	43	(c)	56	(a)
5	(c)	18	(a)	31	(d)	44	(b)	57	(c)
6	(d)	19	(b)	32	(b)	45	(c)	58	(a)
7	(b)	20	(c)	33	(d)	46	(d)	59	(c)
8	(c)	21	(d)	34	(a)	47	(a)	60	(c)
9	(b)	22	(b)	35	(d)	48	(d)	61	(d)
10	(d)	23	(c)	36	(b)	49	(c)	62	(a)
11	(d)	24	(b)	37	(a)	50	(d)	63	(b)
12	(b)	25	(c)	38	(c)	51	(a)	64	(b)
13	(c)	26	(a)	39	(a)	52	(d)	65	(c)

Loop-1:

$$-V_1 + (4+4s)I_1 - sI_2 = 0$$

 $V_1 = (4+4s)I_1 - sI_2$

Loop-2:

$$-V_2 + \left(2s + \frac{1}{2s}\right)I_2 - sI_1 = 0$$
$$V_2 = -sI_1 + \left(2s + \frac{1}{2s}\right)I_2$$

From (1) and (2)

$$Z = \begin{bmatrix} (4+4s) & -s \\ -s & 2s + \frac{1}{2s} \end{bmatrix}$$

(a)

2.

$$L = L_{1} + L_{2} - 2M$$
$$X_{L} = X_{1} + X_{2} - 2X_{m}$$
$$X_{L} = 2 + 6 - 2 \times 3 =$$

2Ω

For maximum power transfer,

 $R = 3.6\Omega$

(b)

(b)

3.

Applying superposition therom, it is known that if all current source value are doubled, then node voltages also are doubled.

4.

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

 \therefore when C increases, ω_0 will decrease.

Bandwidth =
$$\frac{R}{L}$$
 = thus constant

5. (c)

The Δ -connected impedance can be replaced by Y connected impedance using

$$Z_{Y} = \frac{Z_{\Delta}}{3}$$
$$Z_{Y} = \frac{15}{3}$$
$$= 5\Omega$$

6.

(d)

(b)

Conditions for two port reciprocal network,

Parameter	Condition
Z	$\mathbf{Z}_{12} = \mathbf{Z}_{21}$
Y	$Y_{12} = Y_{21}$
h	$h_{12} = -h_{21}$
ABCD	AD-BC = 1

7.

The above problem will be solved by the use of superposition principle. Disabling ${\rm i}_{\rm b}$

3

At resonance, RLC series circuit voltage across L and C have equal magnitude but 180° out of phase from each other.

I

₩V_C

→V

9.

(b)

(d)

8.

Transients and linearity is not dependent. A circuit which is linear may have transients. Transients are there when energy storage element like inductor and capacitor are present, both are linear.

10.

Transmission Parameters Network 'b'

$$= \begin{bmatrix} 1 & a \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & a \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1+3a & 3a \\ 9 & 3a+4 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

For reciprocity, [AD - BC] = 1
 $(3a+4)(1+3a)-(3a) \times 9 = 1$
 $9a^2 - 12a + 4 = 1$
 $a = 1 \text{ or } 1/3$

11. (d)

Selecting the rightmost node as reference node, and leftmost node as V_1

Now, by nodal analysis

$$\frac{V_{1} - V_{2}}{5} + \frac{V_{1}}{2} = 1$$

$$7V_{1} - 2V_{2} = 10 \qquad \dots (1)$$
and $\frac{V_{2}}{3} + \frac{V_{2} - V_{1}}{5} = V_{x}$
Since, $V_{x} = -V_{2}$

$$\therefore \frac{\mathbf{v}_2}{3} + \frac{\mathbf{v}_2 - \mathbf{v}_1}{5} = -\mathbf{V}_2$$

or $-3V_1 + 23V_2 = 0$...(2) [eqn. (1) × 3] + [eqn. (2) × 7] gives

$$155V_2 = 30$$

or $V_2 = 0.1935V$ $\therefore V_1 = 1.4839 V$

$$i_1 = \frac{V_1}{2} = \frac{1.4839}{2} = 0.7419 A$$

 $i_1 = 742 mA$

12. (b)

or

By resistor combinations, the circuit can be simplified as

$$2K\Omega \parallel 4K\Omega = \frac{2 \times 4}{2 + 4} = \frac{8}{6} = \frac{4}{3}K\Omega$$
$$3K\Omega \parallel 7K\Omega = \frac{3 \times 7}{3 + 7} = \frac{21}{10}K\Omega$$

Further

Voltage across $4K\Omega$ resistor

$$V_{4\Omega} = 3 \times \left(\frac{2.4664}{2.4664+1}\right) = 2.1345 V_{10}$$

$$|V_x|$$
 = Voltage across (3k || 7k)

Thus, $|V_x| = (2.1345) \times \frac{\left(\frac{21}{10}\right)}{\left(\frac{4}{3} + 3 + \frac{21}{10}\right)} = 0.6968 v$

OR $V_x = 0.697V$

13. (c)

Let, P_1 = Power supplied by 2 sin(2t) A source

 P_2 = Power supplied by 4 cos(4t) A source

 P_3 = Power supplied by 4 sin(2t) A source

So, total power consumed by resistance

$$P = P_{1} + P_{2} + P_{3} \qquad \dots(i)$$
$$= (I_{1rms})^{2} R + (I_{2rms})^{2} R + (I_{3rms})^{2} R$$
$$P = \left(\frac{2}{\sqrt{2}}\right)^{2} \times 2 + \left(\frac{4}{\sqrt{2}}\right)^{2} \times 2 + \left(\frac{4}{\sqrt{2}}\right)^{2} \times 2$$
$$P = 36W \qquad (answer is wrong)$$

Note: I

 $P = P_1 + P_2 + P_3$ is not valid because 2 sin(2t) and 4 sin(2t) are same frequency terms so first they should be added together and then power consumed should be calculated.

$$i_{(t)} = 6 \sin 2t + 4 \cos 4t$$

$$P = P_1 + P_2$$

$$P_1 = Power \text{ supplied by } 6 \sin 2t A$$

$$P_2 = Power \text{ supplied by } 4 \cos 4t A$$

:.

So,

P =
$$(l_1 \text{rms})^2 \text{R} + (l_2 \text{rms})^2 \text{R}$$

= $\left(\frac{6}{\sqrt{2}}\right)^2 \times 2 + \left(\frac{4}{\sqrt{2}}\right)^2 \times 2$
P = 52W

Note : II

Here superposition of power is valid $P = P_1 + P_2$ because two sinusoidal sources of different frequency are acting on a network.

14. (b)

or,

...

By nodal analysis

17

P =
$$\frac{3V_1}{2} \times V_2 = (-60)(-75) = 4500 \text{ W}$$

P = 4.5 kW

or (b)

15.

Using super position theorem.

For 1V source, let current through 2Ω is I_1

by short circuiting 2V source and open circuiting current source. the equivalent circuit is:

 $I_1 = 0A$ because the bridge made by 1Ω is balanced.

for 1A source

By short circuiting the 2V and 1V source, let current flow through 2Ω is I₂

Using current to voltage source transformation the equivalent circuit will be same as fig.(1) so $I_2 = 0A$. for 2V ;

short circuiting 1V source and by open circuiting 1A current sources the equivalent circuit is

redrawing this as

 $I_1 = 0$ (because bridge is balanced)

 \Rightarrow

So,

16. (d)

For R_{th} ,

Short circuiting the voltage sources and open circuiting the current sources.

17. (a)

By drawing frequency-domain equivalent circuit

By KVL

or

 $\frac{9}{s} = 3I(s) + \frac{2I(s)}{s} - \frac{2}{s}$ $I(s) = \frac{11}{3} \left(\frac{1}{s + \frac{2}{3}} \right)$

or

 $i(t) = \frac{11}{3}e^{(-2/3)t}$ Now, $V_c(t) = \frac{1}{C} \int_0^t i(t) dt - 2$ $= \frac{22}{3} \times \left(-\frac{3}{2} e^{(-2/3)t} \right)_{0}^{t} - 2$ $= -11e^{(-2/3)t} + 9$ $V_{c}(t) = \left\lceil 9 - 11e^{\left(-2/3\right)t} \right\rceil u(t)$ ÷.

18. (a)

> $Q_0 = 300 \mu C$ at $6 \mu F$ capacitor $Q_0 = CV_0$ $V_0 = \frac{Q_0}{C} = \frac{300}{6} = 50V$

The two parallel capacitors have an equivalant capacitance of 3µF. Then this capacitor is in series with 6μF.

Time constant, $\tau = RC_{eq} = 20 \times \left(\frac{3 \times 6}{3 + 6}\right) = 4$	Time constant,	$\tau = RC_{eq} = 20 \times \left(\frac{3 \times 6}{3 + 6}\right)$	= 40
---	----------------	--	------

At, $t = 0^+$

...

KVL gives

 $V_{R} = \frac{300}{6} = 50V$

and at $t = \infty$ capacitor behave open circuit

so
$$V_R \rightarrow 0$$

 $\Rightarrow V_R = 50 e^{-t/40} V_R$

19. (b)

By drawing equivalent frequency-domain circuit including the initial current in the inductor.

$$I(s) = \frac{\frac{3}{s+8}+2}{1+2s} = \frac{s+9.5}{(s+8)(s+0.5)}$$

and

V(s) = 2sl(s) - 2

Thus,

$$V(s) = \frac{2s(s+9.5)}{(s+8)(s+0.2)} - 2$$

= $\frac{2s-8}{(s+8)(s+0.5)} = \frac{A}{(s+8)} + \frac{B}{(s+0.5)}$
A = $\left(\frac{2s-8}{s+0.5}\right)_{s=-8} = 3.2$
B = $\left(\frac{2s-8}{s+8}\right)_{s=-0.5} = -1.2$

Thus, $V(s) = \frac{3.2}{s+8} - \frac{1.2}{s+0.5}$ Taking inverse (Laplace transform)

$$V(t) = [3.2e^{-8t} - 1.2e^{-0.5t}]u(t)$$

20. (c)

21. (d)

In s-domain

(b)

$$Z_{Th} = \frac{4}{s} \parallel 4$$
$$= \frac{\frac{4}{s} \times 4}{\frac{4}{s} + 4}$$
$$Z_{Th} = \frac{4}{s+1}$$

22.

12

At the instance, $S \rightarrow 2$ inductor current, i = 1.59 Amp.

- $S \rightarrow 2, t = 0$
- i(0⁻) = 1.59 Amp

For t = 0⁺, S \rightarrow 2 , L \rightarrow current source

23. (c)

$$\begin{array}{rcl} X_{C} &=& \frac{1}{2\pi fC} \\ \\ \text{When } X_{C} &=& 0, \ Z_{1} &= R_{1} \\ & I_{1} &=& \frac{V}{R_{1}} \\ & \theta_{1} &=& \tan^{-1}\left(\frac{1}{\omega cR}\right) = \tan^{-1}\left(\frac{-X_{C}}{R}\right) = 0 \\ & \vec{I} &=& \vec{I}_{1} + \vec{I}_{2} \\ \\ \text{as, } C \downarrow & X_{C} \uparrow \\ & Z_{1} &=& \sqrt{R^{2} + X_{C}^{2}} \uparrow \Rightarrow I_{1} \downarrow \text{ and} \\ & \theta_{1} &=& \tan^{-1}\left(-\frac{X_{C}}{R}\right) \uparrow_{se} \\ \\ \& I_{2} &=& \text{constant} \\ & I &=& I_{1} + I_{2} \\ \\ \text{as } I_{1} \downarrow & I \downarrow \\ \\ \text{at } X_{C} &=& \infty \Rightarrow C = 0 \\ & I_{1} &=& 0 \quad I = I_{2} \\ & \theta_{1} &=& -90^{\circ} \end{array}$$

24. (b)

Since the current $V_x/4000\,A\,$ passes through $2k\Omega\,$ and 4V source and no current in $3k\Omega\,$ resistor. The KVL equation

$$4 + (2 \times 10^3) \left(\frac{V_x}{4000}\right) + 3 \times 10^3 \times (0) - V_x = 0$$

or
$$4 + \frac{V_x}{2} - V_x = 0 \quad \therefore \quad V_x = 8V$$

or
$$V_x = V_{Th}$$

To find R_{Th}

Due to the presence of dependent source $R_{\rm Th}$ cannot be obtained directly. So it is obtained by finding short circuit current $I_{\rm SC'}$ then

Here,

$$I_{SC} = (2+3)K$$

 $R_{Th} = \frac{V_{OC}}{I_{SC}} = \frac{8}{0.8 \times 10^{-3}} = 10K\Omega$

Therefore,

25. (c)

For $\rm Z_{\rm th}$ (equivalant the venin impedance across load. 1 14

26.

By super position theorem Using 3A current source only :

1 15

IES MASTER Publication

Using 5A current source only :

 \Rightarrow

Therefore,

$$\frac{i_2}{i_x} \times 100 = \frac{1}{(1.8+1)} \times 100 = 35.714\%$$

27. (a)

Since R_{L} is variable

 $Z_{_{th}}$ across $R_{_L}$ is by short circuiting $_{100 \angle 0^\circ}$ V source, we get

so, For V_{th}

open circuit voltage across terminal of ${\rm R}_{\rm L}$ is

(as no current flow in the circuit)

so, Thevenin equivalant circuit is

if, $R_L=5\sqrt{5}\,\Omega$ then I = I_{_{max}} and corrosponding power consumed in $R_{_L}$ will be maximum

 $P_{max} = I_{max}^2 R_L$ SO, $= \frac{(100 \angle 0^{\circ})^2}{(Z_{th} + \underline{R}_L)^2} \times \underline{R}_L$

IES MASTER Publication

÷

$$I = I_{max} = \frac{V_{th}}{Z_{th} + R}$$
$$= \frac{(100)^2}{(10 - j5 + 5\sqrt{5})^2} \times (5\sqrt{5})$$
$$= \frac{(100)^2}{|21.18 - j5|^2} \times (5\sqrt{5})$$
$$= \frac{(100)^2}{(21.76)^2} \times 5\sqrt{5}$$
$$P_{max} = 236 \text{ W}$$

Note : If impedance is given don't use

$$P_{max} = \frac{V_{th}^2}{4R_L}$$

28.

To find R_{Th}

(b)

Here, $V_{\pi} = 0 \Longrightarrow 0.03 V_{\pi} = 0$

$$\therefore$$
 $R_{Th} = 1K\Omega$

Thus for maximum power transfer to $\boldsymbol{R}_{\!\scriptscriptstyle L}$

$$R_{L} = R_{Th} = 1K\Omega$$
To find $V_{Th} = V_{OC}$

$$300\Omega$$

$$V_{Th} = V_{OC}$$

$$2.5 \sin 440t \text{ mV} \longrightarrow 17K\Omega \leq 5K\Omega \leq V_{\pi}$$

$$V_{OC} = -0.03V_{\pi}(1000) = -30V_{\pi}$$
where
$$V_{\pi} = (2.5 \times 10^{-3} \sin 440t) \times \left(\frac{3864}{3864 + 300}\right)$$
Note : $17K\Omega \parallel 5K\Omega = 3.864K\Omega$

Now, $V_{\rm oc} = V_{\rm Th} = -30V_{\pi} = -30 \times 2.5 \times 10^{-3} \times \frac{3864}{(3864 + 300)} \sin 440t$

| 17

T

$$P_{max} = \frac{\frac{V_{Th}^2}{4R_{Th}} = 1.211 \sin^2 440t \,\mu W}{= 1.211 \,\mu W}$$

29. (c)

let the current in the circuit is I

 $V_1 = 5I \implies V_{OC} = V_1 = 5I$

using KVL in loop, we get,

$$10 \angle 30^{\circ} - I \times 1 - 0.5(5I) - 5I = 0$$

$$\Rightarrow I = \frac{10 \angle 30^{\circ}}{8.5} \qquad \dots (ii)$$

from equation (i) and equation (ii)

$$V_{\rm OC} = 5I = \frac{10 \angle 30^{\circ}}{1.7}$$
 volt ...(iii)

for $\mathsf{I}_{_{\mathrm{sc}}}$

 \Rightarrow

Short cricuiting the terminal AB,

due to short circuit,

using KVL in the loop

$$10 \angle 30^{\circ} = I_{SC}R_{S}$$
 ...(v)

$$I_{sc} = \frac{10 \angle 30^{\circ}}{1} = 10 \angle 30^{\circ}$$
 ...(vi)

$$\therefore$$
 $Z_{\rm h} = \frac{V_{\rm OC}}{I_{\rm sc}} = \frac{\frac{10 \angle 30^{\circ}}{1.7}}{10 \angle 30^{\circ}} = 0.588 \Omega$

V

if $\rm R_{s}$ = 0 $\Omega\,$ then $\rm Z_{th}$ = 0 because from equation (v)

...(i)

18

(C)

 \Rightarrow

$$I_{sc} = \frac{10 \angle 30^{\circ}}{R_s} = \frac{10 \angle 30^{\circ}}{0} = \infty$$

Zth = $\frac{V_{oc}}{I_{sc}} = \frac{V_{oc}}{\infty} = 0\Omega$

30.

By connecting 1A current source at input

By KCL

or

÷.

(d)

 $\frac{V}{4} + \frac{V}{15} = 1 + 0.2V_1$ $\frac{V}{4} + \frac{V}{15} = 1 + 0.2\left(\frac{V}{15}\right) \times 10$

or
$$\frac{V}{4} + \frac{V}{15} - \frac{2V}{15} = 1$$

or
$$\frac{11}{60}V = 1 \implies V = \frac{60}{11}$$

Voltage across 1A current source

$$V_{in} = V + 1 \times 10 = \frac{60}{11} + 10 = \frac{170}{11}$$
$$Z_{in} = \frac{V_{in}}{1} = \frac{170}{11}\Omega$$

31.

KVL eq. in loop (i)

$$V_{1} = 3I_{1} + (6 + j4)I_{1} + (6 + j4)I_{2}$$
$$V_{1} = (9 + j4)I_{1} + (6 + j4)I_{2} \qquad \dots(i)$$

IES MASTER Publication

KVL equation in loop (ii),

$$-V_{2} + 2I_{1} + (6 + j4)I_{2} + (6 + j4)I_{1} = 0$$

$$\Rightarrow \qquad V_{2} = (8 + j4)I_{1} + (6 + j4)I_{2} \qquad \dots (ii)$$

since,

$$V_1 = Z_{11} I_1 + Z_{12} I_2$$
 ...(iii)

$$V_2 = Z_{21} I_1 + Z_{22} I_2$$
 ...(iv)

comparing (i) with (iii) and eq. (ii) with eq. (iv) we get,

$$[z] = \begin{bmatrix} 9+j4 & 6+j4 \\ 8+j4 & 6+j4 \end{bmatrix}$$

32.

By definition of y-parameters :

$$I_{1} = 0.1V_{1} - 0.0025V_{2} \qquad \dots (1)$$

$$I_{2} = -8V_{1} + 0.05V_{2} \qquad \dots (2)$$

$$\frac{1-V_{1}}{2} = I_{1} \qquad \dots (3)$$

$$I_{2} = -\frac{V_{2}}{5} \qquad \dots (4)$$

and

... or

÷.

or

(b)

Fro

From eqn. (4) and (2)

$$\frac{-V_2}{5} = -8V_1 + 0.05V_2$$

$$\therefore \qquad 8V_1 = 0.05V_2 + \frac{V_2}{5}$$
or
$$8V_1 = 0.25V_2$$

$$\frac{V_2}{V_1} = \frac{8}{0.25}$$
or
$$\frac{V_2}{V_1} = 32$$
(d)

33.

- Since I_1 and I_2 are not independent in circuit (I) the Z parameter can not be found. .
- Y parameter of circuit I: •

$$\begin{split} I_1 &= & Y_{11}V_1 + Y_{12}V_2 \\ I_2 &= & Y_{21}V_1 + Y_{22}V_2 \\ & V_2 = 0 \ , \quad I_1 = -I_2 \ \text{ and } \ V_1 = I_1R \end{split}$$

with

$$\frac{I_1}{V_1}\Big|_{V_2=0} = Y_{11} = \frac{1}{R} \text{ and } \frac{I_2}{V_1}\Big|_{V_2=0} = -\frac{1}{R} = Y_{21}$$

For circuit II,

- Since $\rm V_{_1}$ and $\rm V_{_2}$ are not independent, the Y parameters can not be found.
- For Z parameter (Circuit II): .

...(4)

34.

(a)

or

and

or

or

:.

 $V_1 = Z_{11}I_1 + Z_{12}I_2$ $V_2 = Z_{21}I_1 + Z_{22}I_2$ $I_2 = 0$ Put $V_1 = V_2$ and $V_1 = I_1 R$...(i) $\frac{V_1}{I_1}\Big|_{I_2=0} = R = Z_{11}$ from eq. (i) $\frac{V_2}{I_1}\Big|_{I_2=0} = \frac{V_1}{I_1}\Big|_{I_2=0} = Z_{11} = Z_{21} = R$ By definition, $y_{21} = \frac{I_2}{V_1}\Big|_{V_2=0}$ To obtain y₂₁ 25Ω 100Ω S V_1 $2I_1$ By KCL $\begin{aligned} I_1 + I_2 &= 2I_1 \\ I_2 &= I_1 \end{aligned}$ $\frac{l_2}{V_1}$ = $\frac{l_1}{V_1}$ = $\frac{1}{25}$ = 0.045 Alternatively : $I_1 = \frac{V_1 - V_2}{25} = 0.04V_1 - 0.04V_2$...(1) $I_1 + I_2 = \frac{V_2}{100} + 2I_1$ $I_2 = \frac{V_2}{100} + I_1 = 0.01V_2 + 0.04V_1 - 0.04V_2$ $I_2 = 0.04V_1 - 0.03V_2$ y₂₁ = 0.04

35. (d)

by KVL in loop (i),

$$V_1 = (R_1 + R_3)I_1 + R_3I_2$$
 ...(i)

by KVL in loop (ii),

 V_2 = $(\alpha R_2 + R_3)I_1 + (R_2 + R_3)I_2$...(ii)

On comparing equation (i) and (ii) with standard equation of Z parameter, we have

Z ₁₁	=	$R_1 + R_3$	(iii)
Z ₁₂	=	R ₃	(iv)
Z ₂₁	=	$\alpha R_2 + R_3$	(v)
Z ₂₂	=	$R_{2} + R_{3}$	

as,

- $Z_{12} \neq Z_{21} \Rightarrow$ Network is not reciprocal
- $Z_{_{11}} \neq Z_{_{22}} \Rightarrow$ Network is not symmetrical
- $Z_{21} = \alpha R_2 + Z_{12}$ (option c is wrong) from eq. (iv) and (v)
- $Z_{11} Z_{12} = R_1$ (option d is true) from eq. (iii) and (iv)

(b)

By KCL

$$\frac{V_1 - V_x}{8} + \frac{V_2}{2} = 1 + 8$$

or, $V_1 - V_x + 4V_2 = 72$ (1) and $\frac{V_x - V_1}{8} + \frac{V_x}{5} = -8$ or $-5V_1 + 13V_x = -320$ (2)

23

and from super node

 $V_2 - V_1 = 2V_x$

or, $V_1 - V_2 + 2V_x = 0$...(3)

From eqn. (2),

$$V_1 = \frac{13V_x + 320}{5}$$

Substituting in eqn. (1) and (3)

$$\frac{13V_x + 320}{5} - V_x + 4V_2 = 72$$

or $8V_x + 20V_2 = 40$ (4)
and $\frac{13V_x + 320}{5} - V_2 + 2V_x = 0$
or $23V_x - 5V_2 = -320$..(5)
Eq. (4) $8V_x + 20V_2 = 40$
+ Eq. (5)×492V_x - 20V_2 = -1280
 $100V_x = -1240$
or $V_x = -1240$
or $V_x = -12.4$ V
 \therefore $V_1 = \frac{13V_x + 320}{5} = \frac{13 \times (-12.4)}{5}$

Therefore power supplied by 1A source

 $V_1 = 31.76V$

$$P = (V_1) \times 1 = 31.76W$$

By $_{Y\,-\,\Delta}$ conversion

+ 320

By source transformation

38.

Thus,

$$V_1 = \left(\frac{1}{1+3+3}\right) \times 18 = \frac{18}{7} = 2.571V$$

Now, in the original circuit

By nodal analysis

$$\frac{V}{3} - 2 + \frac{V_1}{1} = 0$$

or $\frac{V}{3} - 2 + 2.571 = 0$
or $V = -1.7143$ Volts

Voltage across 6Ω resistor = $V - V_1 = -4.2853$ Volts

:.
$$i_2 = -\frac{-4.2853}{6} = -0.7142 A$$

Alternatively:

$$i_2 = \left(\frac{18}{7} - 4\right) \times \frac{1}{2} = -0.7142 A$$

Since, $i_1 = 0$

:.
$$i_1 + i_2 = -0.7142 \text{ A}$$

39. (a)

Using conversion delta star

$$Z_{A} = \frac{9 \times 6}{9 + 6 + 3}$$
 $Z_{C} = \frac{9 \times 3}{9 + 6 + 3}$ $Z_{B} = \frac{6 \times 3}{9 + 6 + 3}$

$$Z_A = 3\Omega$$
 $Z_C = 1.5\Omega$ $Z_B = 1$

The given circuit become as

...(1)

Using KVL equation at input loop

$$V_1 = (1.5+2)I_1 + 2I_2$$

Using KVL equation at output loop

$$V_2 = (3+1+1) I_2 + 2I_1$$
 ...(2)

Since,

	$V_1 = Z_{11} I_1 + Z_{12} I_2$	(3)
&	$V_2 = Z_{21} I_1 + Z_{22} I_2$	(4)

On comparing equation (1) with (3) and equation (2) with (4)

$$Z_{11} = 3.5\Omega$$

 $Z_{12} = 2\Omega$
 $Z_{21} = 5\Omega$
 $Z_{22} = 2\Omega$

40. (a)

By inspection, $V_1 = 5 V \dots (1)$ Nodes 3 and 4 from a super node. Thus by KCL

$$\frac{V_2}{2} + \frac{V_2 - V_3}{10} = -1$$

or $6V_2 - V_3 = -10$ (2)
 $\frac{V_3 - V_2}{10} + \frac{V_3}{20} + \frac{V_4 - V_1}{12} = 5$
or $-5V_1 - 6V_2 + 9V_3 + 5V_4 = 300$

or $-6V_2 + 9V_3 + 5V_4$ 325 ...(3) = Also at supernode, $V_4 - V_3 = 10$...(4) = 6V₂+10 From eqn. (2), V_3 ...(5) From eqn. (4), $V_4 = 10 + V_3$ $= 10 + 6V_2 + 10$ $= 6V_2 + 20$...(6) Substituting V_{3} and V_{4} in Eqn. (3) $-6V_2 + 9(6V_2 + 10) + 5(6V_2 + 20) =$ 325 $78V_2 = 135$ or $V_2 = 1.73077V$ or $V_2 = V$ Since, V = 1.731 V [upto three decimal places] So,

41. (b)

Thereninn equivalant circuit across 10Ω in series with 100V battery are drawn in figure 1 and figure (2)

In figure (1) by applying KVL equation in loop (1) and loop (2) We get

> $50 = 30 I_1 - 10 I_2 \qquad \dots(1)$ $50 = -10 I_1 + 30 I_2 \qquad \dots(2)$

On solving equation (1) and (2)

and

or

$$I_1 = I_2 = 2.5A$$

For the mesh containing $V_{\mbox{\tiny th}}$ we have

$$100 - V_{th} + 10(I_1) + 10(I_2) = 0$$

 $V_{th} = 100 + 10(2.5) + 10(2.5)$
 $V_{th} = 150 V$

From figure (2) we get

Using $\Delta - Y$ conversion

$$Z_{A} = Z_{B} = Z_{C} = \frac{10 \times 10}{10 + 10 + 10} = \frac{10}{3}\Omega$$

 $R_{\text{th}} = 3.33 + (10 + 3.33) || (10 + 3.33) \Omega = 10\Omega$

 $R_{th} = 10\Omega$ as bridge is balanced

Alternatively:

So

42. (a)

Given circuit is

Applying KVL to the loops, for the assumed directions of current flow we obtain.

 $\begin{aligned} 5I_1 - 100 + 50 - I_2 &= 0\\ \& & -200 + 10(I_1 + I_2) + 5 I_1 - 100 &= 0\\ Thus, 5I_1 - I_2 &= 50 & \text{and} & 15 I_1 + 10 I_2 &= 300\\ \text{on solving} & I_1 &= 12.3077 \text{ A}, I_2 &= 11.538 \text{ A}\\ P_{50V} &= I_2 \times 50 &= 11.538 \times 50 &= 576.9 \text{ W (supplied)}\\ P_{100V} &= I \times 100 &= 1230.77 \times 100 &= 1230.77 \text{ W (supplied)}\\ P_{200V} &= (I_1 + I_2)200 &= 23.8457 \times 200 &= 4769.14 \text{ W (supplied)} \end{aligned}$

43. (c)

Using mesh analysis

In mesh 3;(1)

$$\frac{V_x}{9} = i_3 - i_1$$

 $V_{x} = (i_{3} - i_{2})3$

As

$$\therefore -i_1 + \frac{i_2}{3} + \frac{2i_3}{3} = 0$$

or $i_2 + 2i_3 = 45$ (using $i_1 = 15A$)(2)

In mesh 2

 $(i_2 - i_1) \times 1 + 2i_2 + 3(i_2 - i_3) =$

or $6i_2 - 3i_3 = 15$

or $2i_2 - i_3 = 5$ (3)

Solving (2) and (3), we get

 $i_2 = 11A, \quad i_3 = 17A$

Now,

 $V_x = 3(i_3 - i_2) = 3(17 - 11) = 18V$

0

44. (b)

For t < 0, 4u(t) = 0, therefore the circuit reduces to

circuit is assumed to be in steady state so

 $V_{L}(0^{-}) = 0$ [short circuit]

 $I_{C}(0^{-}) = 0$ [open circuit]

At t

$$\begin{split} i_R \left(0^- \right) &= -5A \\ V_R \left(0^- \right) &= -5 \times 100 = -150 \, V \\ V_C \left(0^- \right) &= 150 \, V \\ I_L \left(0^- \right) &= -i_R \left(0^- \right) = 5A \\ &= 0^+ : \end{split}$$

Current in inductor and voltage in capacitor do not change instantaneously, so $i_L(0^+) = 5A$, $V_C(0^+) = 150 V$. The circuit can be represented as

At left node, by KCL

$$4 = i_{L} + l_{R} = 5 + i_{R}$$

$$\therefore \qquad I_{R} = -1A$$

$$\therefore \qquad V_{R}(0^{+}) = (-1) \times 30 = -30V$$

$$i_{C}(0^{+}) = -1 + 5 = 4A$$

$$V_{L}(0^{+}) = V_{R}(0^{+}) + V_{C}(0^{+})$$

$$= -30 + 150 = 120V$$

Thus,
$$V_L(0^+) = 120V, V_R(0^+) = -30V, i_C(0^+) = 4A$$

45. (c)

To find impulse response,

$$V_{in} = \delta(t)$$

$$\therefore \qquad H(s) = \frac{V_0(s)}{1}$$

Therefore,
$$V_0|_{V_{in}=\delta(t)} = \frac{2}{\frac{2}{s}+2} = \frac{s}{s+1} = H(s)$$

Now, if $V_{in} = 6e^{-t}u(t)$

:.
$$V_0(t) = L^{-1} \{ V_{in}(s) . H(s) \}$$

Since, $V_{in}(s) = \frac{6}{s+1}$

$$\therefore \qquad \qquad \mathbf{V}_{0} = \left(\frac{\mathbf{6}}{\mathbf{s}+\mathbf{1}}\right) \left(\frac{\mathbf{s}}{\mathbf{s}+\mathbf{1}}\right) = \frac{\mathbf{6s}}{\left(\mathbf{s}+\mathbf{1}\right)^{2}}$$

By partial fraction expansion,

$$V_0 = \frac{A}{s+1} + \frac{B}{(s+1)^2} = \frac{6}{s+1} - \frac{6}{(s+1)^2}$$

∴ $V_0(t) = (6e^{-t} - 6te^{-t})u(t)$
= $6e^{-t}(1-t)u(t)$

46. (d)

Mutual inductance = $K_{\sqrt{L_1L_2}}$ Between L_1 = 8H and L_2 = 2H, M_{12} = $1\sqrt{8 \times 2}$ = 4H

Between $L_3 = 4H$ and $L_4 = 1H$, $M_{34} = 1\sqrt{4 \times 1} = 2H$

By KVL

$$V_{S} = j8\omega I_{1} - j4\omega I_{2} \dots (1)$$

$$0 = -j4\omega I_{1} + (5 + j\omega 6)I_{2} - j2\omega I_{3} \dots (2)$$

$$0 = -j2\omega I_{2} + (3 + j\omega)I_{3} \dots (3)$$

$$V_{_0} = \ \textbf{3I}_\textbf{3} \Rightarrow \ \text{It is better to obtain I}_{_3}.$$

From eq. (3)

$$I_2 = \frac{3+j\omega}{2j\omega}I_3$$

From eqn. (1)

$$I_{1} = \left[V_{S} + j4\omega \left(\frac{3+j\omega}{2j\omega} \right) I_{3} \right] \frac{1}{j8\omega}$$
$$I_{1} = \frac{1}{j8\omega} \left[V_{S} + (6+2j\omega) I_{3} \right]$$

Subtituting in eq. (2)

$$0 = \frac{-j4\omega}{j8\omega} \Big[V_s + (6+2j\omega)I_3 \Big] + (5+j2\omega) \times \frac{(3+j\omega)}{j2\omega}I_3 - j2\omega I_3$$
$$I_3 \Big[-\frac{(6+j2\omega)}{2} + \frac{(15-6\omega^2+j23\omega)}{j2\omega} - j2\omega \Big] = \frac{V_s}{2}$$

or

or

$$\int \frac{-j6\omega + 2\omega^2 + 15}{\omega^2 + 15}$$

$$I_{3}\left[\frac{-j6\omega+2\omega^{2}+15-6\omega^{2}+j23\omega-4\omega^{2}}{j2\omega}\right] = \frac{V_{s}}{2}$$

$$I_{3}\left[\frac{15+j17\omega}{j\omega}\right] = V_{s}$$
$$V_{0} = 3I_{3}$$

Since,

...

$$\frac{V_0}{V_s} = \frac{j3\omega}{15+j17\omega}$$

47. (a)

At t > 0

Differentiating equation (3) wrt time

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \left(\frac{\mathrm{d}\mathbf{i}_2}{\mathrm{d}t}\right)\mathbf{R}_2 + \frac{1}{\mathrm{C}}\mathbf{i}_2 \qquad \dots (4)$$

Equation (3) can also be written as

$$V = i_2 R_2 + V_c$$

$$\frac{dv}{dt} = \left(\frac{di_2}{dt}\right)R_2 + \frac{dV_{(c)}}{dt} \qquad \dots (5)$$

From equation (4) and (5)

$$\frac{dV_{c}}{dt} = \frac{i_{2}}{C} \Rightarrow \frac{dV_{c}(0^{+})}{dt} = \frac{I_{2}(0^{+})}{C} \dots (6)$$

IES MASTER Publication

$$\left. \frac{dl_i}{dt} \right|_{t=0^+} = \frac{+R_2 l}{L} = \frac{5 \times 5}{.1} = 250 \text{ A/sec}$$

from equation (6)

 $\frac{dv_{c}}{dt}\Big|_{t=0^{+}} = \frac{I_{2}(0^{+})}{C} = \frac{1}{C}$ $= \frac{5}{2.5m} = 2000 \text{ V/sec.}$

48. (d)

For t < 0

$$V = \left(\frac{100}{100+50}\right) \times 3 = 2 \text{ Volts}$$

Current in inductor

 $\frac{5}{500} = 10 \text{ mA}$

At $t = 0^+$, the circuit becomes

Now, by nodal analysis

$$\frac{1}{L}\int V\,dt + C\,\frac{dV}{dt} + \frac{V}{500} \qquad = \qquad 0$$

As current in inductor can't change instantaneously; so at $t=0^{\scriptscriptstyle +}$

$$\frac{1}{L}\int V dt = 10 \text{ mA}$$

Therefore,

 $10 \times 10^{-3} + C \frac{dV}{dt} + \frac{V}{500} = 0$

or
$$\frac{dV}{dt} = -\frac{2}{10 \times 10^{-6} \times 500} - \frac{10 \times 10^{-3}}{10 \times 10^{-6}} = -1400 \, V/s$$

49. (c)

Case I

t < 0

Switch at position 1, circuit under steady state (capacitor O.C.)

Case II

t > 0

$$\begin{array}{c} 2\Omega \\ W \\ 6V \\ - \\ 2F \\ i \\ - \\ 1FV_0 \\ 1 \\ V_0 \\ V_0 \\ 1 \\ V_0 \\$$

Using KVL equation

$$\frac{1}{2}\int i\,dt + \int i\,dt + 2i = 6$$

Taking Laplace transfer

$$\frac{1}{2}\frac{I(s)}{s} + 2I(s) + \frac{I(s)}{s} = \frac{6}{s}$$

$$I(s) = \frac{6}{2s+1.5}$$

$$I(s) = \frac{6/2}{s+0.75} = \frac{3}{s+0.75}$$

Taking inverse Laplace

$$i(t) = 3e^{-0.75t}$$

$$V_{0}(t) = \int_{0}^{t} i dt$$

$$= \int_{0}^{t} 3e^{-0.75t} dt$$

$$= 3\int_{0}^{t} e^{-0.75t} dt = \frac{3}{0.75} [1 - e^{-0.75t}]$$

$$V_{0}(t) = 4[1 - e^{-0.75t}]$$

$$V_{0}(t)|_{t=4/3 \text{ sec.}} = 4[1 - e^{-1}] = 2.528 \text{ V}$$

| 34

| 35

50. (d)

Case I

for t < 0

Switch is at position 1 and inductor is S.C. and under steady state condition.

By KVL in Mesh-1: $V = j5\omega l_1 - j3\omega (l_1 - l_2)$ $V = j2\omega I + j3\omega I_2$ (1) or In Mesh-2: $j6\omega I_2 + j2\omega (I_2 - I_1) + j3\omega I_1 =$ 0 or $\mathbf{j}\mathbf{8}\omega\mathbf{l}_2 + \mathbf{j}\omega\mathbf{l}_1 = 0$ $I_2 = \frac{-I_1}{8}$ (2) or Substituting in Eqn. (1), we get $V = j2\omega I_1 + j3\omega \left(\frac{-I_1}{8}\right) = \frac{j13\omega}{8}$ $\frac{V}{I_1} = Z_{in} = j\frac{13}{8}\omega$ $L_{eq} = \frac{13}{8} = 1.625$ (d) t < 0 $V_{c}(0^{-}) = \frac{Q_{0}}{C} = \frac{2500\mu C}{50\mu F} = 50 V$

 \Rightarrow

52.

Draw circuit at $t = (0^+)$

$$100V \xrightarrow{i(0^{+})R} + \underbrace{\frac{V_{c}}{H} + \underbrace{V_{c}}_{R} + \underbrace{V_{c}}_{R} + \underbrace{V_{c}}_{R} + \underbrace{V_{c}}_{R} + \underbrace{V_{c}}_{T} + \underbrace{V_{c}}_{T} + \underbrace{V_{c}}_{T} + \underbrace{V_{c}}_{R} + \underbrace{V_{c}}_{T} + \underbrace{V_{c}}_{T}$$

 $V_{c}(0^{-}) = V_{c}(0^{+}) = 50V$

Since at $t = 0^{(+)}$ inductor behave as an open circuit and capacitor behave as short circuit.

as i(0⁺) = 0 circuit is open So using KVL

$$-100 + L \frac{di}{dt}\Big|_{t=0^{+}} + 50 \implies 0$$
$$\frac{di}{dt}\Big|_{t=0^{+}} = \frac{50}{L} = \frac{50}{0.1} = 500 \text{ A/sec.}$$

53. (b)

 $V_{\mbox{\tiny th}}$ is the open circuit voltage across terminal ab

Using KVL equation.

	$18 + V_x + 2V_x - V_{oc} =$	0
\Rightarrow	V _{oc} =	$18 + 2V_x + V_x$
·:	V _x =	+3×1 V
\Rightarrow	V _{oc} =	18 + 3(+3) = 27V

By short circuiting the 6Ω resistor

Using KVL equation in given loop (1)

$$18 + V_x + 2V_x = 0$$
$$V_y = -6$$

The current through 1Ω resistor is I

So $I = \frac{6}{1} = 6A$ $I_{sc} = I + 3 = 9A$ $R_{th} = \frac{V_{oc}}{I_{sc}}$ $R_{th} = \frac{27}{9} = 3\Omega$

54.

 \Rightarrow

(a)

Using 3A source only :

- -

Using 5A source only :

$$5\Omega$$

$$i_{2}$$

Therefore, $i = i_1 + i_2 = 1.8 - 1 = 0.8 \text{ A}$

 \therefore Statement 1 is correct.

Superposition theorem doesn't apply to power as power is a nonlinear quantity. Hence statement 2 is not correct.

55.

Given circuit

(a)

$$\therefore \qquad Y_{eq} = \frac{1}{R + j\omega L}$$

$$Y_{eq} = \frac{1}{R + j\omega L}$$

$$Y_{2} = \frac{1}{R + j\omega L}$$

$$Y_{2} = \frac{1}{R + j\omega C}$$

$$Y_{eq} = Y_{1} + Y_{2}$$

$$Y_{eq} = \frac{1}{R + j\omega L} + \frac{1}{R + \frac{1}{j\omega C}}$$

$$= \frac{R - j\omega L}{R^{2} + (\omega L)^{2}} + \frac{j\omega C(1 - j\omega RC)}{(1 + jR\omega C)(1 - jR\omega C)}$$

$$\Rightarrow \qquad y_{eq} = \frac{R - j\omega L}{R^{2} + (\omega L)^{2}} + \frac{j\omega C}{1 + \omega^{2}R^{2}C^{2}} + \frac{\omega^{2}C^{2}R}{1 + \omega^{2}C^{2}R^{2}}$$
At resonance Img(Y) = 0 (i term of Y) will be zero)

y('_{eq}) eq

$$\Rightarrow \qquad \qquad \frac{\omega L}{R^2 + \omega^2 L^2} = \frac{\omega C}{1 + \omega^2 R^2 C^2}$$

$$\Rightarrow \qquad L + \omega^2 R^2 C^2 L = \omega^2 L^2 C + C R^2$$

$$\Rightarrow \qquad \qquad \mathsf{L}-\mathsf{C}\mathsf{R}^2 \ = \ {}_{\boldsymbol{\omega}^2}\mathsf{L}^2\mathsf{C}-{}_{\boldsymbol{\omega}^2}\mathsf{R}^2\mathsf{C}^2\mathsf{L}$$

 \Rightarrow

 \Rightarrow

...(2)

$$L - CR^{2} = \omega^{2}LC(L - CR^{2})$$
$$\omega = \sqrt{\frac{1}{LC}} = \frac{1}{\sqrt{4 \times 4}} = \frac{1}{4} \text{ rad / sec.}$$

At
$$\omega = \frac{1}{4}$$
 rad / sec. from eqn. (1) and (2)

$$Y_{eq} = \frac{1}{2-j1} + \frac{1}{2+j1} = \frac{4}{5} \Im \Rightarrow z_{eq} = \frac{5}{4} \Omega = R_{eq.}$$

$$P = (I_{ms})^2 R_{eq} = \left(\frac{v_{ms}}{R_{eq}}\right)^2 \cdot R_{eq.}$$

$$P = \frac{\left(\frac{10}{\sqrt{2}}\right)^2}{\frac{5}{4}} = \frac{100}{2 \times 5} \times 4 = 40W$$

56. (a)

First determine thevenin equivalant circuit and then calculate the current through $_{24\Omega}$ to find the power consumed.

Open circuiting the $_{24\Omega}\,$ resistor.

$$\frac{1 k \Omega}{1 k} + \frac{1 k \Omega}{1 k$$

But in loop (1)

$$= \frac{48 - 3V_x}{1000} = \frac{48 - 3V_{th}}{1000} \qquad \dots (2)$$

On solving equation (1) and (2)

$$V_{th} = -120 \left(\frac{48 - 3V_{th}}{1000} \right)$$
$$V_{th} = -9V = V_{oc}$$

Now by short circuting the $_{\mbox{24}\Omega}$ resistor

ľ

۱

IES MASTER Publication

 \Rightarrow

$$\downarrow_{x} = 48 \text{ mA}$$

$$\Rightarrow \qquad I_{sc} = -480 \text{ mA}$$
Hence
$$R_{th} = \frac{V_{th}}{I_{sc}} = \frac{9}{.48} = 18.75\Omega$$

$$\downarrow_{th} = \frac{V_{th}}{V_{th}} = 24\Omega$$

$$I_{24\Omega} = \frac{V_{th}}{R_{th} + 24} = \frac{9}{24 + 18.75}$$

$$I_{24\Omega} = 0.21A$$

So power consumed by 24Ω = I² R = (.21)² × 24 = 1.0584 w

57.

| 40

...(1)

Also

$$\frac{V_2 - V_1}{75} = 0.2$$

 $-V_1 + V_2 = 15$

or

Solving (1) and (2)

 $V_1 = 3V V_2 = 18V$

 $V_{_{Th}}$ = $V_{_2}$ as no current flows in $\,220.625\Omega\,$ resistor.

The equivalent ckt now becomes

Power delivered to 100Ω resistor is

$$P = \left(\frac{18}{305 + 100}\right)^2 \times 100$$

or

(a)

0.1975 W [upto power decimal places]] Ρ

58.

For $V_2 = 20$ V

:.

 $I_{L} = \frac{V_{2}}{R_{L}} = \frac{20}{400} = 0.05 \, \text{A} < 1 \text{A}$

 \Rightarrow resistance of lamp is 20 Ω .

Now, by Nodal analysis

$$\frac{V_1}{100} + \frac{V_1 - 5V_x}{100} = I_s$$

...(2)

or	$2V_1 - 5V_x$	=	100I _s	(1)
Also,	$\frac{V_2}{400} + \frac{V_2 - 5V_x}{20}$	=	0	
	$21V_2-100V_x$	=	0	(2)
As,	V_x	=	$V_1 - 5V_x$	
	V _x	=	$\frac{V_1}{6}$	(3)
Substituting in eqr	n. (1) and (2)			
	$2V_1 - \frac{5V_1}{6}$	=	100 I _s	
or	$7V_1$	=	600 I _s	(4)
Similarly,	$21V_2 - \frac{100V_1}{6}$	=	0	
As	V_2	=	20 V	
	$21 \times 20 - \frac{100V_1}{6}$	=	0	(5)
From Eqn. (4), we	get			
	Ŧ		7V ₁ 7×25.2 0 004 0	

 $I_s = \frac{7V_1}{600} = \frac{7 \times 25.2}{600} = 0.294 \text{ A}$

59.

(Using current source to voltage source transformation)

For $V_{\rm th}$

(C)

 $V_{\mbox{\tiny th}}$ is the open circuit voltage across ab so equivalent circuit.

Using KVL in loop (1)

$$-25 + (5+10+3) I + 10 = 0$$
$$I = \frac{15}{18} = \frac{5}{6}A$$

Using KVL equation in loop (2)

 $-V_{th}$

+ 3I + 20 = 0

$$V_{th} = +20+3I$$

 $= 20 + \frac{5}{6} \times 3 = 20 + \frac{15}{6}$
 $V_{th} = 22.5V$

For R_{th}

By short circuiting the all independent voltage sources & open circuiting independent current source. The equivalant circuit is

60.

(C)

By definition of transmission parameters

$$V_{1} = AV_{2} + B(-I_{2})$$

$$I_{1} = CV_{2} + D(-I_{2})$$

$$V_{1} = 2I_{1} + 10(I_{1} + I_{2}) = 12I_{1} + 10I_{2} \qquad ...(1)$$

$$V_{2} = 4I_{2} + 10(I_{1} + I_{2}) = 10I_{2} + 14I_{2} \qquad ...(2)$$

From equation (2)

$$I_{1} = \frac{1}{10}(V_{2} - 14I_{2})$$

$$I_{1} = 0.1V_{2} - 1.4I_{2}$$

$$I_{1} = 0.1V_{2} + 1.4 (-I_{2}) \qquad ...(4)$$

Substituting value of I_1 in eqn. (1)

$$V_1 = 12(0.1 V_2 - 1.4 I_2) + 10 I_2$$

 $V_1 = 1.2V_2 - 6.8I_2$

IES MASTER Publication

61.

 $V_1 = 1.2V_2 + 6.8(-I_2)$...(5) From eqn. (5) and (4) $V_1 = 1.2V_2 + 6.8(-I_2)$ $I_1 = 0.1V_1 + 1.4(-I_2)$ $\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1.2 & 6.8 \\ 0.1 & 1.4 \end{bmatrix}$ (d) KI₁ へ 1<u>6V</u> ≹8Ω (≹2Ω)16V 6A(**†** Using node equation at node 1 $\frac{V_1}{2} + \frac{V_1 - 16 + KI_1}{4} = 6$ $V_1 - 16 + K I_1 + 2V_1 = 24$ $\therefore V_1 = 2I_1$ \Rightarrow $V_1 + \frac{KV_1}{2} + 2V_1 = 16 + 24$ \Rightarrow $V_1 [2 + K + 4] = 80$ $V_1 [6 + K] = 80$ $V_1 = \frac{80}{6+K}$...(1) $P_{2\Omega}$ = $2l_1^2 \le 50W$ Since $I_1 \leq \sqrt{\frac{50}{2}} \leq 5A$ $V_1 = 2I_1$ $V_1 \leq 10V$...(2) from equation (1) and (2)

$$\frac{80}{6+K} \le 10V$$
$$\frac{80}{10} \le 6+K \implies K \ge 2$$

| 44

(a)

62.

Using KCL equation at node 'a'

$$l_{1} = \frac{V_{1}}{1} + \frac{V_{1} - V_{2}}{2}$$

$$l_{1} = V_{1} (1.5) - .5V_{2} \dots (1)$$

$$-l_{2} = 0$$

Using KCL equation at node 'b'

$$\frac{V_2}{2} + \frac{V_2 - V_1}{2} + 3I_1 - I_2 = 0$$

 $V_2 - .5V_1 + 3I_1 = I_2$

 $V_2\left(\frac{1}{2}+\frac{1}{2}\right)-V_1(.5)+3I_1-I_2 = 0$

 \Rightarrow

We know

$$V_{1} = Z_{11}I_{1} + Z_{12}I_{2}$$

$$V_{2} = Z_{21}I_{1} + Z_{22}I_{2}$$

$$I_{2} = 0, \quad \frac{V_{1}}{I_{1}} = Z_{11} \text{ and } \frac{V_{2}}{I_{1}} = Z_{21}$$

$$I_{1} = 0, \quad \frac{V_{1}}{I_{2}} = Z_{12} \text{ and } \frac{V_{2}}{I_{2}} = Z_{22}$$

and as

as

Putting
$$I_2 = 0$$
 in equation (2) and putting the value of V_2 in equation (1) we get
 $V_2 = .5V_1 - 3I_1$, $I_1 = V_1(1.5) - .5(5V_1 - 3I_1)$
 $I_1 = V_1(1.5) - .25V_1 + 3I_1 \times .5$
 $I_1 = +1.25 V_1 + 1.5 I_1$

$$-.5 I_1 = 1.25 V_1 = \frac{V_1}{I_1} = \frac{-.5}{1.25} = -.4\Omega$$

Putting value of V_1 in equation (1)

We get

$$\frac{V_2}{I_1} = Z_{21} = -3.2\Omega$$

Put $I_1 = 0$ in equation (1) and (2)

Put V_1 in equation (2)

...(2)

 \Rightarrow

(b)

 $V_{1} = \frac{1}{3}V_{2}, I_{2} = (V_{2})\left(\frac{1}{2} + \frac{1}{3}\right) = \frac{5}{6}\vec{V}_{2}$ $\frac{V_{2}}{I_{2}} = Z_{22} = \frac{6}{5}\Omega$ $Z_{12} = \left(\frac{1}{3}\right)\left(\frac{6}{5}\right) = .4\Omega$

63.

Equation for the two-port are

$$V_1 = 10^3 I_1 + 10I_2$$
 ...(1)

$$V_2 = -10^6 I_1 + 10^4 I_2$$
 ...(2)

The characterizing equations of the input and output networks are

$$V_{\rm S} = 500 I_1 + V_1$$
 ...(3)

$$I_2 = -10^4 I_2$$
 ...(4)

Substituting V_2 in eqn. (2)

$$-10^{4} I_{2} = -10^{6} I_{1} + 10^{4} I_{2}$$

$$I_{2} = \frac{10^{6}}{2 \times 10^{4}} I_{1} = 50 I_{1} \qquad \dots (5)$$

$$\frac{I_{2}}{I_{1}} = 50$$

or

(b)

64.

Considering section A

$$V_1 = 2I_1 + V_2$$
 ...(1)

$$I_2 = \frac{V_2}{5} + I_1 = -0.2V_2 + I_1$$
 ...(2)

From eqn. (2)

or

$$I_1 = +0.2V_2 + I_2$$
 ...(3)

Substituting in eqn. (1)

 $V_1 = 2(+0.2V_2 + I_2) + V_2$ $V_1 = 1.4V_2 + 2I_2$...(4)

From eqn. (3) and (4)

$$\begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix} = \begin{bmatrix} 1.4 & 2 \\ 0.2 & 1 \end{bmatrix}$$

Similarly for network B

$$V_{1} = 3I_{1} + V_{2} \text{ and } I_{2} = -\frac{V_{2}}{5} + I_{1}$$

$$\therefore \qquad I_{1} = I_{2} + 0.2V_{2} = 0.2V_{2} + I_{2}$$

$$\therefore \qquad V_{1} = 3(I_{2} + 0.2V_{2}) + V_{2} = 1.6V_{2} + 3I_{2}$$
Therefore,
$$\begin{bmatrix} A_{2} & B_{2} \\ C_{2} & D_{2} \end{bmatrix} = \begin{bmatrix} 1.6 & 3 \\ 0.2 & 1 \end{bmatrix}$$

The equivalent ABCD matrix

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix} \begin{bmatrix} A_2 & B_2 \\ C_2 & D_2 \end{bmatrix}$$
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1.4 & 2 \\ 0.2 & 1 \end{bmatrix} \begin{bmatrix} 1.6 & 3 \\ 0.2 & 1 \end{bmatrix}$$
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 2.64 & 6.2 \\ 0.52 & 1.6 \end{bmatrix}$$

÷

(C)

65.

For the two-port network

$$[Y] = \begin{bmatrix} 0.005 & -0.004 \\ 0.05 & 0.03 \end{bmatrix}$$

Therefore,

$$I_1 = 0.005V_1 - 0.004V_2$$
 ...(1)

$$I_2 = 0.05V_1 + 0.03V_2$$
 ...(2)

$$\frac{100 - V_1}{R_s} = I_1$$
...(3)

$$\therefore \qquad \frac{100 - V_1}{25} = 0.005 V_1 - 0.004 V_2$$

or
$$100 = 1.125 V_1 - 0.1 V_2 \qquad \dots (4)$$

Also,
$$I_2 = -\frac{V_2}{R} = -\frac{V_2}{100} \qquad \dots (5)$$

:.

$$-\frac{V_2}{100} = 0.05V_1 + 0.03V_2$$

or
$$0.05V_1 + 0.04V_2 =$$

65

From eqn. (6),

$$V_2 = -\frac{5}{4}V_1$$
 so eqn. (4) becomes
 $100 = 1.125V_1 - 0.1\left(-\frac{5}{4}V_1\right)$
or
 $V_1 = \frac{100}{1.25} = 80 \text{ V}$

0

or

...(6)