GATE-2018

Afternoon Shift-2
 (FOLLOWING QUESTIONS MAY BE CHALLENGED)

Section: Civil Engineering

GATE (Q.48) An 8 m long simply-supported elastic beam of rectangular cross-section ($100 \mathrm{~mm} \times 200 \mathrm{~mm}$) is subjected to a uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$ over its entire span. The maximum principal stress (in MPa, up to two decimal places) at a point located at the extreme compression edge of a crosssection and at 2 m from the support is
Sol: (90)

at 2 m from support,
Bending moment, $\mathrm{M}=4021021$

$$
=60 \mathrm{KN}-\mathrm{m}
$$

Shear force, $V=40$ (10 2) $=20 \mathrm{KN}$
At external compression edge (top fibre)
Shear stress $P=0$
Bending stress, $\quad=\frac{\mathrm{MY}}{\mathrm{I}}$
$=\frac{\left(6010^{6} \mathrm{~N} \mathrm{~mm}\right) 100 \mathrm{~mm}}{\frac{100200^{3} \mathrm{~mm}}{12}}$
$=90 \mathrm{~N} / \mathrm{mm}^{2}$
$=90 \mathrm{MPa}$
Since this edge is free from shear stress, hence it is a principal plane.
Thus maximum principal stress $=90 \mathrm{MPa}$

GATE-2018

Afternoon Shift-2

Section : Civil Engineering

GATE (Q.50) At a small water treatment plant which has 4 filters, the rate of filtration and backwashing are $200 \mathrm{~m}^{3} / \mathrm{d} / \mathrm{m}^{2}$ and $1000 \mathrm{~m}^{3} / \mathrm{d} / \mathrm{m}^{2}$, respectively. Backwashing is done for 15 min per day. The maturation, which occurs initially as the filter is put back into service after cleaning, takes 30 min . It is proposed to recover the water being wasted during backwashing and maturation. The percentage increase in the filtered water produced (up to two decimal places) would be \qquad
Sol: (7.53)
Rate of filteration $=200 \mathrm{~m}^{3} / \mathrm{d} / \mathrm{m}^{2}$
Backwashing rate $=1000 \mathrm{~m}^{3} / \mathrm{d} / \mathrm{m}^{2}$
Time for backwashing $=15 \mathrm{~min} /$ day
Time wasted in maturation $=30 \mathrm{~min}$
Let the area of filter to be unity

Total water to be produced $=200 \mathrm{~m}^{3} / \mathrm{d} / \mathrm{m}^{2} \times \frac{23.25}{24}=193.75$
Water wasted in backwashing
100015

$$
2460=10.4167 \mathrm{~m}^{3}
$$

Water wasted during maturation
$=\frac{200 \quad 30}{2460}$
$=4.1667 \mathrm{~m}^{3}$
Total filter water to be produced
$=193.75+10.4167+4.1667$
$=208.3334 \mathrm{~m}^{3}$
Hence percentage increase in filtered water produced $=\frac{208.3334193 .75}{193.75}$
$=7.53 \%$

